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Abstract. A combined scattering mechanism involving the states of free electron–hole pairs
(exciton continuum) and discrete excitons as intermediate states in the multi-phonon Raman
scattering leads to (i) a strong increase of the scattering efficiency in the presence of a high
magnetic field and to (ii) an outgoing excitonic resonance. The two features are not compatible
when only uncorrelated pairs (leading only to a strong increase of the scattering efficiency
under the applied magnetic field) or discrete excitons (resulting in the outgoing resonance at the
excitonic gap) are taken into account.

1. Introduction

In a recent publication [1], we have shown that the strong outgoing resonance observed in
high-order multi-phonon resonant Raman scattering (MPRRS) from polar semiconductors
can be explained when the high energy intermediate electronic states belong to the excitonic
continuum (approximated by free electron–hole pairs, EHPs) and only couple to the bound
excitonic state at the last stage of a scattering process. The high probability of decay into
the continuum reduces the role of the MPRRS mechanism involving discrete excitons as the
only intermediate states for explanation of the observed outgoing resonance at the ground
excitonic transition (see [1] and references therein). Cooled by the emission of a sufficiently
large number of LO phonons, the EHP binds into an exciton whose energy is not enough
for LO-phonon-assisted decay.

In this work we analyse the effects of a high magnetic field on the outgoing excitonic
resonance considering, as in [1], the monomolecular creation of a cold exciton by the light-
generated free EHPs which lose energy but preserve their spatial correlation through the
interaction with LO phonons.

2. Model

The main contribution to theN th order MPRRS efficiency follows from processes with
one (figure 1(a)) and two (figure 1(b)) bound excitonic intermediate states at the last stage
of the elementary scattering process. Only these contributions correspond to the cascade
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(a)

(b)

Figure 1. Two diagrams involving (a) one and (b) two discrete exciton intermediate states
contributing to the MPRRS efficiency in the range of outgoing resonance. Hollow circles
represent photon–EHP interaction and bold circles correspond to the electron–LO-phonon
interaction while the square vertices are shown for transitions between two states of discrete
exciton and for discrete–continuum transitions. Solid lines above (below) the dash–dotted line
represent the electrons (holes) and horizontal lines bound excitons. Bold dashed lines connecting
left- and right-hand sides of the diagrams correspond to LO phonons while the dotted lines
represent the incident (on the left and right sides) and scattered (in the centre) photons.

of transitions where the bound exciton cannot decay into the EHP continuum through the
emission of LO phonons. We assumemh � me so that the hole energy is less than the
energy of one LO phonon and all phonons emitted by the EHP before its binding into a
discrete exciton are emitted exclusively by the electron.

We use the Landau gaugeA = A(0, xH, 0) for a magnetic field directed along the
z-axis and the corresponding wave functions of free EHPs. Only the ground state of the
bound exciton is taken into account for discrete excitonic intermediate states in the last
stage of the process. According to [2] and [3], the bound exciton wave function in a high
magnetic field (a � aH , wherea is the Bohr radius in a zero magnetic field andaH is the
magnetic length,aH = √

h̄c/eH ) can be written as

9exc
K⊥Kz

= 9⊥K⊥9‖Kz
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where

9⊥K⊥ = exp
[− |r⊥ − r⊥(K⊥)|2 /(4a2

H )
]

aH

√
2πLxLy

× exp
{
i
[
(Kx − (y/a2

H ))Rx + KyRy + 8(r⊥, −K⊥) + C(Kx, Ky)
]}
(1)

and

8(r⊥, −K⊥) = (
xy/a2

H − Kxx − Kyy
)
(me − mh)/2M

C(Kx, Ky) = a2
HKxKy(me − mh)/2M (2)

me (mh) is the electron (hole) effective mass,M = me+mh, r⊥(K⊥) = (a2
H/H) [H × K⊥]

and R, r are the centre of mass and relative motion coordinates of an electron and hole.
The longitudinal part9‖Kz

of the exciton wave function can be written as

9‖Kz
= 1

ζ
√

a‖Lz

exp(iKzRz)ξ(z/a‖) (3)

whereξ(s) describes the relative motion of the electron and hole along the magnetic field
direction and satisfies the equationξ(s = 0) = 1. The constantζ is determined by the
normalization condition

ζ 2 =
∫ ∞

−∞
ds ξ2(s).

We do not specify the exact form ofξ(s) (see [2]) and introduce the two functions

2(α) =
∫ +∞

−∞
ds exp(iαs)ξ(s) and η(α) =

∫ +∞

−∞
ds exp(iαs)ξ2(s)

to be used below. Forξ(s) = exp(−|s|) one findsζ = 1, η(α) = 1/(1 + α2/4) and
2(α) = 2/(1+α2). The wave function of (1) reduces to that of [2] when the Landau gauge
is changed for the symmetric one.

3. Scattering efficiency

The scattering efficiency can be written as [4]

d2S

d�dωs

= ω3
s ωl

c4

ns

nl

e∗
sαesβelγ e∗

lλSαγβλ(ωl, ωs, κl , κs) (4)

where Sαγβλ is the light scattering tensor of rank four,c the light velocity in vacuum
andnl (ns), el (es), κl (κs) andul (us) are the refractive index, polarization vector, wave
vector and group velocity of the incident (scattered) light, respectively. Using diagrammatic
techniques, similar to those of [1], [3] and [5], we find for the contributions of the diagrams
in figure 1(a) (figure 1(b))

d2SNa(b)

d�dωs

= σ0
ωsns

ωlnl

|elpcv|2|espcv|2
πa2

Hm2
0h̄

2

δ(ωl − ωs − NωLO)

(ωs − ω1H )2 + (γexcH (0)/2)2

1

LNa(b)

(5)

whereσ0 = (e2/m0c
2)2 andγexcH (0) is the inverse lifetime (broadening) of the exciton at

the ground state with energyE1H = h̄ω1H . According to the assumptionmh � me, the
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energy and the broadening of the hole have been neglected in all energy denominators. The
quantityLNa(b) has dimensions of length and, for the diagram in figure 1(a)

1

LNa

=
∑

β

DNβ

3NβYNβ

4n0,nN−1 (6)

where the indexβ designates the sequence of transitions made by the electron through
Landau bands emitting successivelyN −1 phonons. It represents the set ofn0, n1, . . . , nN−1

Landau numbers and indicesi1, i2, . . . , iN−1. Each indexi may be 0 or 1: it is zero when
the electron does not change the direction of motion along the magnetic field after the
phonon emission and one when the sign of the velocity is opposite in the states before and
after the phonon emission. In (6),DNβ represents the integral

DNβ = 1

K0l

∫ ∞

0

N−1∏
j=1

[
dxj

Kj l
Bnj−1nj

(xj )χ
ij (Kj−1, Kj , xj )

] 〈
BnN−1n0(xN)χiN (KN−1, K0, xN)

〉
(7)

where

Kj = +
√

2me

(
ωl − ωgH − njωeH − jωLO

)
/h̄ l =

√
h̄/(2meωLO) (8)

Bnn′(x) = min(n!, n′!)
max(n!, n′!)

e−x x|n−n′|
[
L

|n−n′|
min(n,n′)(x)

]2
(9)

and

χi(K, K ′, x) = [
x + a2

H (K ∓ K ′)2/2
]−1

(10)

h̄ωgH = Eg + h̄eH/(2µc), whereµ = memh/M andEg is the gap. In (10), the− (+) sign
corresponds toi = 0 (i = 1).

Note thatiN = 0 when the direction of motion along the magnetic field after emission
of N − 1 phonons coincides with an initial direction. In this case,s = ∑N−1

n=1 in is an even
number. For odds the direction of motion is opposite andiN = 1. The symbol〈. . .〉
corresponds to the average over the directions of the wavevectorsq1⊥, q2⊥, . . . , qN−1⊥ in
the xy-plane, whenxj = a2

Hq2
j⊥/2 andqN⊥ = −∑N−1

i=1 qi⊥. We used also

YNβ =
N−1∏
j=0

(2γj/αωLO) γj = γe(nj , Kj ) (11)

whereα is the Fr̈ohlich coupling constant. Whenγe(n, |kz|) is determined by the interaction
with LO phonons, we find

γe(n, |kz|) = αωLO

∑
n′

(2l|k′
z|)−1

∫ ∞

0
dxBnn′(x)

[
χ0(|kz|, |k′

z|, x) + χ1(|kz|, |k′
z|, x)

]
k′
z =

√
k2
z + 2me [ωeH (n − n′) − ωLO ] /h̄. (12)

The sum overn′ is limited by the condition thatk′
z has to be real. When allγ0, γ1, . . . , γN−1

are determined by the probability of emitting an LO phonon in a real transition, the
substitution of (12) into (11) and multiplication of the result bylN leads toYNβ defined
in (134) of [5]. However, close to the resonanceωs = ω1H , the electron (after emitting
(N − 1) LO phonons) occupies a state with energy less than the energy of an LO phonon.
In this caseγN−1 is determined by some other weaker scattering mechanism:

γN−1 = 0N−1 0N−1 � γj j = 0, 1, . . . , N − 2. (13)
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This leads to the result

YNβ = YN−1β

20N−1

αωLO

. (14)

The length3Nβ is defined as

3Nβ = f −1
Nβ (z = 0) fNβ(z) = f i1i2...iN−1(z). (15)

For example, in the caseN = 4

f 010(z) = [
f ++−−(z) + f −−++(z)

]
/2

f ++−−(z) = 1

λ3

∫ ∞

−∞

[
j=2∏
j=0

dzj

λj

]
ϒ+

(
z0

λ0

)
ϒ+

(
z1 − z0

λ1

)
ϒ−

(
z2 − z1

λ2

)
ϒ−

(
z − z2

λ3

)
(16)

ϒ+(t) =
{

e−t t > 0
0 t < 0

ϒ−(t) =
{

0 t > 0
et t < 0

(17)

λj = h̄Kj/meγj andγj = γe(nj , Kj ).
In p-representationf ++−−(z) can be written as

f ++−−(z) = 1

2π

∫ ∞

−∞

dp exp(ipz)

(1 + iλ0p)(1 + iλ1p)(1 − iλ2p)(1 − iλ3p)
. (18)

Finally, we have used the definition

4n0,nN−1 = 1

ζ 4
[δn0,02

2(a‖K0) + δnN−1,02
2(a‖KN−1)

− 2δn0,0δnN−1,02(a‖K0)2(a‖KN−1)] (19)

where2(α) has been defined after (3).
We proceed to calculate the contribution of the diagram in figure 1(b). Since one of the

intermediate states for the process of figure 1(b) corresponds to an exciton withK 6= 0,
we need to comment on some details of the ground exciton dispersionEexc(K⊥, |Kz|). The
energyEexc(K⊥, |Kz|) can be written as

Eexc(K⊥, |Kz|) = EgH + E(K⊥) + h̄2K2
z /(2M). (20)

The functionE(K⊥) in some limits can be found in [2]. For our purposes it suffices to
note thatE(K⊥ = 0) = −1E1H is the exciton binding energy in a high magnetic field and
E1H = h̄ω1H = EgH − 1E1H . The contribution of the diagram in figure 1(b) is given by
(5), where

1

LNb

= αωLO

M

me

∫ xmax

0
dx exp(−x)

[η(a‖Kz0mh/M) − η(a‖Kz0me/M)]2

ζ 4
(
x + a2

HK2
z0/2

)2
lKz0γexc(x, Kz0)

×
∑

β

RN−1β(x, Kz0)

3N−1βYN−1β

. (21)

Kz0 =
√

2M
[
ωl − ωgH − E(x)/h̄ − (N − 1)ωLO

]
/h̄ is the absolute value of thez-

component of an exciton wave vector in theN th real intermediate state,x = a2
HK2

⊥/2,
and η(α) has been defined after (3). TheK⊥max is a maximum value ofK⊥ allowed
by energy conservation, i.e., under the condition thatKz0 is real. At variation ofK⊥
from zero to infinity the valueE(x) changes from−1E1H to zero [6]. Therefore, in the
rangeωl > ωgH + (N − 1)ωLO , we havexmax → ∞, whereas forω1H + (N − 1)ωLO <
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ωl < ωgH + (N − 1)ωLO the values ofK⊥max and xmax are determined by the equation
h̄ωl − EgH − (N − 1)h̄ωLO = E(K⊥max). We used also the following definitions:

RN−1β(K⊥, Kz0) = 1

lK0

∫ ∞

0

N−2∏
j=1

[
dxj

lKj

Bnj−1nj
(xj )χ

ij (Kj−1, Kj , xj )

]
× 〈

BnN−2n0(xN−1)Pβ(K⊥, Kz0)
〉

(22)

Pβ(K⊥, Kz0) = [
ϒβ(K⊥, Kz0) + ϒβ(K⊥, −Kz0)

]
/2 (23)

and

ϒβ(K⊥, Kz0) = ζ−4
{
xN−1 + (a2

H/2)
[
(−1)pKN−2 − K0 − Kz0

]2
}−1

×{
δn0,02

2
[
a‖

(
K0 + mhKz0/M

)] + δnN−2,02
2
[
a‖

(
(−1)pKN−2 + meKz0/M

)]
−2δn0,0δnN−2,02

[
a‖

(
K0 + mh

M
Kz0

)]
2

[
a‖

(
(−1)pKN−2 − me

M
Kz0

)]
× cos

[
a2

H

(
qN−1 × K⊥

)]}
(24)

whereβ is a set of indexesn0, n1, . . . , nN−2, i1, i2, . . . , iN−2, p = ∑N−2
n=1 in. The variables

of integration in (22) arexj = a2
Hq2

j⊥/2 with a constraintqN−1⊥ = − ∑N−2
i=1 qi⊥ − K⊥.

The symbol〈· · ·〉 denotes the average over angles which determine the direction of vectors
q1⊥, q2⊥, . . . , qN−2⊥, K⊥ in the xy-plane.

4. Applicability limits

Let us discuss the applicability limits of the expressions for contributions of diagrams in
figure 1. We assume that1E1H < h̄ωLO and consider four intervals for the laser frequency:

(i) ω1H + (N − 1)ωLO < ωl < ωgH + (N − 1)ωLO

(ii) ωgH + (N − 1)ωLO < ωl < ω1H + NωLO

(iii ) ω1H + NωLO < ωl < ωgH + NωLO

(iv) ωl > ωgH + NωLO. (25)

The frequency width of the intervals (i) and (iii) is1E1H/h̄ and that of interval (ii) is
(ωLO−1E1H/h̄). The outgoing excitonic resonance coincides with the boundary of intervals
(ii) and (iii).

Equations (5) and (6) for the contribution of the diagram in figure 1(a) are valid when
KN−1 is real for nN−1 = 0 (see (8)). This is satisfied within the intervals (ii), (iii) and
(iv). In intervals (ii) and (iii), the value ofKN(nN = 0) is pure imaginary and it is real in
interval (iv). This means thatγN−1 is determined by (13) in (ii) and (iii) (therefore, in the
vicinity of the outgoing resonance) and (14) is valid. Let us show that the0N−1 cancels
out of the expression for the contribution of the diagram in figure 1(a). To do this note that
3Nβ from (15) is proportional to the mean free path

LN−1 = h̄KN−1

me0N−1
(26)

whenLN−1 � λj , j = 0, 1, . . . , N − 2. Thus,

3−1
Nβ = L−1

N−1TNβ (27)

where TNβ is a dimensionless function ofλ0, λ1, . . . , λN−2. For N = 2 we find [3]
that (320)

−1 = f 0(z = 0) = 0, (321)
−1 = f 1(z = 0) = 1/(λ0 + λ1). This leads to
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T20 = 0, T21 = 1. Likewise, for N = 3, (3300)
−1 = f 00(z = 0) = 0, (3310)

−1 =
f 10(z = 0) = λ0/((λ0 + λ1)(λ0 + λ2)), (3311)

−1 = f 11(z = 0) = λ1/((λ1 + λ0)(λ1 + λ2)),
(3301)

−1 = f 01(z = 0) = λ2/((λ2 + λ0)(λ2 + λ1)). For λ2 → L2 this leads toT300 = 0,
T310 = λ0/(λ0+λ1), T311 = λ1/(λ0+λ1) andT301 = 1. Using (14), (27) and (26) we obtain(

YNβ3Nβ

)−1 = (YN−1β)−1 αωLOme

2h̄KN−1
TNβ. (28)

Thus, the quantity0N−1 does not appear in the final result.
Equations (5) and (21) for the contribution of figure 1(b) are valid whenKz0 is real which

is true for all four frequency intervals. In (ii), (iii) and (iv) the broadeningγN−2 is determined
by the probability of emitting an LO phonon, whileγN−2 → 0N−2 in (i), where0N−2 � γj ,
j = 0, 1, . . . , N −3. Note that (21) does not contain0N−2 in the interval (i) as it was shown
above. The contribution of figure 1(b) depends strongly on the behaviour ofγexc(K⊥, Kz0)

in the denominator of (21). This is the inverse relaxation time of the exciton in the state
with energyEexc(K⊥, Kz0) = h̄ωl − (N − 1)h̄ωLO . For Eexc(K⊥, Kz0) > E1H + h̄ωLO the
value ofγexc(K⊥, Kz0) is determined by the probability of emitting an LO phonon and is
proportional toα. However, forEexc(K⊥, Kz0) < E1H + h̄ωLO , the real emission of one
LO phonon is impossible andγexc(K⊥, Kz0) is determined by other much weaker processes,
so thatγexc(K⊥, Kz0) → 0exc(K⊥, Kz0), with 0exc � γexc. The change of the scattering
mechanism dominating the broadening takes place at the frequency corresponding to the
outgoing excitonic resonance. Below this point, the contribution of figure 1(b) exceeds
strongly that of figure 1(a). Note that in this range we have to take into account other
contributions involving processes with acoustic phonons (see below).

Finally, the pole approximation (i.e., real transitions) for integrals over
k0z, k1z, . . . , kN−1z for the contribution of figure 1(a) and overk0z, k1z, . . . , kN−2z for fig-
ure 1(b) results in the constraintsN > 2 andN > 3 for (6) and (21), respectively.

Strongly out of the resonance, a two-band model is not a good approximation. To
reproduce the observed overall factorω3

s ωl in the scattering efficiency one needs to sum
over a large number of intermediate states. In this case it is better to use another expression
for the transition matrix element [8] which is equivalent to the one we use but gives better
convergence and displays theω3

s ωl factor in any order of summation.

5. Discussion and conclusions

Let us consider the resonant behavior of the MPRRS efficiency as a function ofH andωl .
We limit ourselves to the caseN > 3 where both (6) and (21) are valid. Both contributions
increase in the vicinity ofK0 = 0, which corresponds toωlmax,mh→∞ ' ωgH +nωeH . Taking
into account the finite value ofmh leads to an exact relationωlmax(n) = ωgH +eHn/µc. This
condition corresponds to the creation of EHPs in the vicinity of the Landau band bottoms.
The resonant conditions can be achieved by changing eitherH or ωl . The maxima in a
magnetic field dependence take place at

Hmax(n) = µc

e

ωl − ωg

n + 1/2
(29)

being independent of the orderN of the scattering process. ForN = 3 there is an
additional resonance [3] corresponding to the contribution of figure 1(b) at ω′

lmax,mh→∞ '
ωgH + neH/mec + ωLO . This resonance follows from the increase of(321)

−1 =
1/(λ0+λ1) = 1/(h̄K0/meγ0+h̄K1/meγ1) in (21), whenK1 → 0, because of the divergence
in γ0 (see (12)). Note also that the contribution of figure 1(b) is equal to zero [3] for
ωlmin,mh→∞(n, N − 1) = ωgH + neH/mec + (N − 1)ωLO .
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Above the outgoing resonance the contributions of figure 1(a) and figure 1(b) in the
MPRRS efficiency are of the same order of magnitude. However, as mentioned before,
below the resonance the contribution of figure 1(b) strongly increases because of the strong
increase in the exciton lifetime in the real intermediate state with the energy being too
small for emission of an LO phonon. In this range, other scattering processes such as the
absorption of LO phonons, interaction with acoustic phonons, etc have to be taken into
account. We give now a qualitative picture of the process including in our consideration
the distribution function of excitons with respect toK⊥, |Kz|. Let us introduce the integral
efficiency for theN th order process as

SN =
∫ ∫

d2SN

d� dωs

d� dωs = 1

ul

∑
κs

W̄sN (30)

where ul is the group velocity of incident light and̄WsN the normalized probability of
emitting the scattered light quantum per unit time [7]. Equation (30) differs from (5) only
by the absence of the factor 4πδ(ωl − ωs − NωLO).

On the other hand,∑
κs

W̄sN =
∑

K⊥,Kz

PexcN−1(K⊥, |Kz|)γl(K⊥, |Kz|) (31)

wherePexcN−1(K⊥, |Kz|) is the normalized dimensionless distribution function of excitons
created by the light in anN−1 LO-phonon-assisted process andγl(K⊥, |Kz|) the probability
of an LO-phonon-assisted emission of the scattered light quantum which can be written as
γl(K⊥, |Kz|) = ∑

κs
ws and

ws = 2π

h̄

∑
f

∣∣∣∣∣∑
a

〈f |Us |a〉〈a|Hint |i〉
Ei − Ea + ih̄γa/2

∣∣∣∣∣
2

δ(Ei − Ef ) (32)

Hint is the Fr̈ohlich interaction of the exciton with LO phonons andUs represents the
interaction of excitons with the light. The initial and final state energy areEi =
Eexc(K⊥, |Kz|) and Ef = h̄ωs + h̄ωLO , respectively. The intermediate state energy
Ea = EaEHP + h̄ωLO includes both the discrete and continuum part of the excitonic
dispersion. Let us separateγl into two corresponding parts,γl = γldisc + γlcont . The
outgoing resonance is related to the contributionγldisc0 to γldisc from the transition via the
ground state of the exciton. According to (32), we find

γldisc0(K⊥, |Kz|) = 4
nsωs

h̄c3

(
e

m0

)2

|espcv|2 αω2
LOl

K2
⊥ + K2

z

×exp
(−a2

HK2
⊥/2

)
a‖a2

Hζ 6

[η(Kza‖mh/M) − η(Kza‖me/M)]2

[ωexc(K⊥, |Kz|) − ω1H − ωLO ]2 + γ 2
excH (0)/4

. (33)

Above the excitonic resonance,ωl > ω1H + NωLO , we have

PexcN−1(K⊥, |Kz|) = WexcN−1(K⊥, |Kz|)
γexc(K⊥, |Kz|) (34)

whereWexcN−1(K⊥, |Kz|) is the normalized number of excitons created per unit time in the
volumeV0 in the (N − 1)-LO-phonon-assisted process. The probabilityWexcN−1(K⊥, |Kz|)
has been calculated in [3] forN = 4. When used in (34) together with (33), (30) and (31)
it reproduces the result of (5) and (21).

Note that above the outgoing resonance the distribution is not zero only in a very narrow
interval of energies [3] sinceWexcN−1(K⊥, |Kz|) is proportional toδ[ωl − (N − 1)ωLO −
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Eexc(K⊥, |Kz|)/h̄]. However, forωl below the resonance the distribution becomes smooth.
If the most important mechanism in this range is the interaction with acoustic phonons, one
has to take into account diagrams with external acoustic phonon lines. In the range (ii) (see
(25)) the smoothing of the distribution should be weaker than in the range (i). The reason
for this is the kinetic energy of excitons in range (ii) which is larger than the exciton binding
energy. Since the probabilities of scattering and decay via the interaction with phonons are
of the same order, the exciton decays after a few interactions with acoustic phonons. The
decay of an exciton in range (i) is suppressed because of its small energy. In this case, the
distribution depends on the probability of non-radiative recombination. At zero magnetic
field, the distribution of excitons in range (i) has been considered in [9]–[12].

The smoothness of the distribution leads to (a) the broadening of the MPRRS peaks in
the range (ii) and especially in the range (i) and to (b) the increase of the integrated scattering
intensity, since the diagrams with acoustic phonon lines give additional contributions to the
MPRRS efficiency.

To summarize, we have shown that the outgoing excitonic resonance becomes strongly
enhanced under a high magnetic field. Above the outgoing resonance, the scattering
efficiency for N > 3 may be up toα−2 times stronger than in a zero magnetic field
where the MPRRS efficiency [1] is proportional toα3, whereas in a high magnetic field it is
proportional toα, as follows from (5), (6) and (21). The crossover fromα3 to α results from
the quasi-one-dimensional character of free EHPs inN (figure 1(a)) or N − 1 (figure 1(b))
intermediate states under a high magnetic field. The enhancement is also valid for the
ranges (i) and (ii) below the excitonic resonance, where one has to calculate the exciton
distribution function taking into account the interaction with acoustic phonons. To the best
of our knowledge such calculations have yet to be performed. However, the distribution
function is proportional to the creation probability of excitons with energy in the interval
between zero and ¯hωLO which is increased byα−2 times in a high magnetic field [3]. Thus,
the MPRRS efficiency also increases below the excitonic resonance.

The integrated efficiency as a function ofωl has to be asymmetric with respect to the
point h̄ωl = Nh̄ωLO + E1H because of the strong increase in the exciton lifetime below
the resonance and appearance of additional contributions from the processes with acoustic
phonons.
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